
VeriTaS: Verification of Type System Specifications
Mechanizing Domain Knowledge about Progress and Preservation Proofs

Sylvia Grewe
TU Darmstadt, Germany
grewe@cs.tu-darmstadt.de

Abstract
Developing a type system with a soundness proof is hard.
The VeriTaS project aims at simplifying the development of
sound type systems through automation of soundness proofs
and through automated derivation of efficient type checkers
from sound type system specifications.

Within the VertiTaS project, I focus on developing an
interface for the verification of progress and preservation
proofs which shall automate standard parts of such proofs. To
achieve this, I propose to identify recurring proof strategies
in progress and preservation proofs from the literature, to
develop a format for abstractly representing these proof
strategies, and to mechanize them by connecting them to
existing theorem provers.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs; I.2.3 [Artificial intelligence]: De-
duction and Theorem Proving

Keywords Type systems, type soundness, theorem proving

1. Motivation
Nowadays, researchers frequently develop type systems for
programming languages, for example for domain-specific
languages (DSLs) or for core calculi of general-purpose
programming languages. Typically, most researchers in the
area of programming languages agree that such type system
developments should be accompanied by full soundness
proofs. They also agree that one should use a theorem prover
such as Isabelle [9], Coq [8], Twelf [1], etc. to derive the
soundness proofs, since mistakes in pen-and-paper proofs
are very common. Numerous solutions to the POPLMARK
challenge [3] demonstrated that one can, in principle, use

many different existing theorem provers for mechanizing the
soundness proofs of type systems.

Despite these demonstrations, many researchers still resort
to pen-and-paper formalizations and proofs of their type sys-
tems. Concrete concerns about using an existing verification
tool which I gathered from these researchers include:
1. “It takes too long to develop a full proof using tool X.”
2. “I do not want to print the formalization in the language

of tool X in my paper. I want to present type system
specifications in a notation that is common in the area of
programming languages.”

3. “I already have to develop an implementation in a general-
purpose language of my type system anyway, because
I want to be able to test, debug, and benchmark my
type system - I do not want to develop a mechanized
formalization in tool X in addition to that.”

Here, concern 1 seems to be the main concern, while the
other two seem to weigh slightly less heavy.

How can we make it more attractive for programming
language researchers to mechanize soundness proofs of type
systems? In particular, how can we reduce the effort of
mechanizing these proofs?

2. Problem
One standard way from literature for formalizing type sound-
ness is via progress and preservation theorems. Past research,
notably the work by Wright and Felleisen [12], led to a uni-
fied structure of progress and preservation proofs, which one
can study in detail in Pierce’s TAPL [10]. This “unified struc-
ture” seems to be so well understood that some researchers do
not even bother to completely spell it out in their publications.
However, to the best of my knowledge, no one has attempted
to formalize or mechanize this abstract domain knowledge
about progress and preservation proofs.
I propose to mechanize this domain knowledge and to use
it in combination with existing automated proof techniques,
with the aim of reducing the effort of mechanizing standard
progress and preservation proofs. Concretely, I focus on the
following research questions:
(a) What are recurring strategies in progress and in preser-

vation proofs? I will call such strategies domain-specific



proof strategies, where the domain in my case are progress
and preservation proofs.

(b) What is a useful format for abstractly representing
domain-specific proof strategies? To be useful, the format
should allow for representing a proof strategy such that it
is applicable to several concrete progress and preservation
proofs. Additionally, the format should be understand-
able by programming languages researchers who develop
soundness proofs of type systems, i.e. by domain experts.
If necessary, domain experts should be able to use the for-
mat to define their own domain-specific proof strategies.

(c) How can one mechanize a domain-specific proof strategy
and its application in concrete progress and preservation
proofs? How can the mechanized strategies interact with
existing theorem proving techniques? And in particular,
how can one mechanize these strategies so that program-
ming language researchers are more willing to use the
resulting implementation for mechanizing progress and
preservation proofs?

Several existing verification tools provide formats for speci-
fying abstract proof strategies. For example, Coq [8] provides
the ltac language for defining custom proof tactics and proof
search methods. Isabelle [9] allows for implementing cus-
tomized proof tactics in ML within theory files. Additionally,
there is an implementation of proof planning [11] within
Isabelle, the IsaPlanner [4]. IsaPlanner includes implemen-
tations of various general-purpose plans such as rippling [2],
which is a powerful technique for automating the proofs
of certain induction steps. However, the usage of such lan-
guages and techniques typically requires rather deep knowl-
edge about the internals of a theorem prover and about verifi-
cation techniques. It is not obvious how one would encode
a domain-specific proof strategy so that domain experts can
easily understand the strategies and encode their own ones.

3. Approach
3.1 Identifying Domain-Specific Proof Strategies
To identify proof strategies that are domain-specific to
progress and preservation proofs, I will study the respec-
tive proofs in the established literature and in publications
such as TAPL [10]. My goal is to identify the most common
techniques used, which may include induction schemes, tem-
plates for auxiliary lemmas, and common proof techniques
for verifying individual induction cases.

Candidate techniques that I already identified are, for in-
stance, structural induction on the syntax of the programming
language in question, induction on typing derivations, case
distinction on rules of the dynamic semantics, inversion lem-
mas, and lemmas which ”propagate” progress or preservation
along to auxiliary functions used in the static and dynamic
semantics of the language. An example for such a propaga-
tion lemma is the well-known substitution lemma from the
soundness proof of the standard type system for the simply-

typed lambda calculus (e.g. TAPL [10]), which ”propagates”
the preservation property onto the substitution function.

This first part of my research project shall generate an
informal list of domain-specific proof strategies, which can
by itself already serve as a guide for other researchers who
develop progress and preservation proofs.

3.2 Representing Domain-Specific Proof Strategies
In the second part of my research project, I will develop a
format which allows for representing domain-specific proof
strategies abstractly, that is, without concrete knowledge
about the typing rules or the small-step rewrite rules of
the dynamic semantics. The format shall, on the one hand,
allow for representing domain-specific proof strategies so
that they are applicable to different concrete type systems
and dynamic semantics. On the other hand, the format shall
remain comprehensible for domain experts, i.e. researchers
who understand the structure of progress and preservation
proofs.

To meet these criteria, I propose to represent domain-
specific proof strategies as open proof tree templates: As
described for example by Richardson and Bundy [11], one
can represent a proof via a proof tree, whose root is the
theorem to be proven and whose nodes represent subgoals
arising from intermediate proof steps such as induction or
case distinction or represent auxiliary lemmas. The edges
from a parent node to its children represent a proof strategy
such that a proof of the parent node follows from proofs of
the child nodes. Verified nodes and verified edges represent
subgoals or proof steps that have been verified by a theorem
prover. A proof tree is closed if all its leaves are verified
nodes and if all its edges are verified. A proof tree is open if
it contains any unverified leaves or edges.

A proof tree template shall abstract over concrete domain-
specific concepts in a proof tree. In the domain of progress
and preservation proofs, such concepts are, for instance, typ-
ing rules or rewrite rules from the dynamic semantics. The
abstraction of a domain-specific concept shall preserve any
abstract information about the concrete concept which is nec-
essary for an abstract representation of the domain-specific
strategy. For example, for a typing rule, such information may
include whether the rule is an introduction or an elimination
rule, the number of premises, an abstract representation of
the typing rule’s conclusion, etc. One of the main challenges
of this part of my project will be to identify which abstract
information about the domain-specific concepts involved in
progress and preservation proofs is required for abstractly
representing domain-specific proof strategies.

Representing domain-specific proof strategies as templates
of open proof trees shall enable domain experts to understand
the strategies and to develop their own domain-specific
proof strategies if needed: The templates shall employ the
terminology of progress and preservation proofs and abstract
over concepts that are familiar to domain experts.



3.3 Mechanizing Domain-Specific Proof Strategies
I propose to mechanize domain-specific proof strategies
within an infrastructure that can address all three concerns
of programming language researchers from Section 1. Con-
cretely, I propose to design an interface for the mechanization
of soundness proofs of type systems in the form of an ex-
tensible library within the VeriTaS project [5]. The library
shall be implemented within a general-purpose programming
language: This way, programming language researchers are
able to verify a type system specification by solely interacting
with the library, in a programming language which they are
likely to know already. Furthermore, library users will be
able to extend the library based on their custom needs. For
example, a user could add pretty-printing in LATEX or add
functionality for executing certain type system specifications.

VeriTaS shall comprise an internal domain-specific lan-
guage for specifying syntax, dynamic semantics and type
systems of programming languages and for proving proper-
ties on these specifications. It shall include an implementation
of proof trees and domain-specific strategies as suggested in
Section 3.2, together with an API for interacting with proof
trees. Such an API includes for example functionality for
triggering the automatic generation of closed or open proof
trees, for inspecting proof trees, for manually calling specific
proof strategies on inner nodes, for triggering the verification
of leaves and edges, and for replacing nodes entirely with
custom intermediate proof steps if necessary. VeriTaS shall
interact with existing theorem provers such as Vampire [7]
and Isabelle [9] for verifying edges and leaves of proof trees.

VeriTaS shall provide extension points for adding spec-
ification constructs, as well as additional functionality that
addresses concerns 2 and 3 from Section 1. However, imple-
menting the corresponding functionality shall not be the main
focus of my research project.

An ideal candidate language for implementing the VeriTaS
library is Scala: The Scala language is widely known and
used in the programming languages community. Scala is well-
suited for implementing expressive internal DSLs. Scala also
provides numerous language features which will facilitate
the design of extension points for the library, such as object
orientation and generics. Finally, building the VeriTaS library
in Scala will allow us to (re)use existing Scala code that
connects to different verification tools. For example, the
libisabelle1 library allows for interacting with Isabelle via
Scala, as successfully demonstrated by Hupel et al. [6].

4. Evaluation
I will focus on evaluating whether the domain-specific strate-
gies decrease the user effort for proving progress and preser-
vation, compared to using existing verification tools.

I plan to evaluate this by preparing different case studies
consisting of type system specifications. I will formalize these

1 https://github.com/larsrh/libisabelle

specifications along with progress and preservation proofs
once in VeriTaS, and once in Isabelle, using the Isar proof
language. I will compare the number of individual user inter-
actions against each other. That is, in VeriTaS, every manual
modification of a proof tree will count as a user interaction, in
Isabelle every proof command that modifies the subgoals, to-
gether with every lemma specification. Furthermore, provided
I can find suitable candidates, I plan to conduct a small study
where I will ask other programming language researchers or
students to conduct progress and preservation proofs using
VeriTaS and to rate their experience.

Acknowledgments
I thank my supervisors Mira Mezini and Sebastian Erdweg
and my fellow PhD students Oliver Bracevac, Manuel Weiel,
and Lars Hupel for helpful discussions. This work is sup-
ported by the European Research Council, grant No. 321217.

References
[1] The Twelf project. http://twelf.org/, 2014.

[2] Alan Bundy et al. Rippling: A heuristic for guiding inductive
proofs. Artif. Intell., 62(2):185–253, 1993.

[3] Brian E. Aydemir et al. Mechanized Metatheory for the Masses:
The POPLMARK Challenge. In Proceedings of International
Conference on Theorem Proving in Higher Order Logics
(TPHOL), pages 50–65. Springer-Verlag, 2005.

[4] L. Dixon and J. D. Fleuriot. Isaplanner: A prototype proof
planner in isabelle. In Proceedings of International Conference
on Automated Deduction (CADE), pages 279–283, 2003.

[5] S. Grewe, S. Erdweg, P. Wittmann, and M. Mezini. Type
systems for the masses: Deriving soundness proofs and efficient
checkers. In Proceedings of International Symposium on New
Ideas, New Paradigms, and Reflections on Programming &
Software (ONWARD), pages 137–150. ACM, 2015.

[6] L. Hupel and V. Kuncak. Translating Scala Programs to Is-
abelle/HOL - System description. In Proceedings of Inter-
national Joint Conference on Automated Reasoning (IJCAR),
2016.

[7] L. Kovács and A. Voronkov. First-order theorem proving
and Vampire. In Proceedings of International Conference
on Computer Aided Verification (CAV), pages 1–35. Springer,
2013.

[8] The Coq development team. The Coq proof assistant reference
manual. LogiCal Project, 2004. URL http://coq.inria.

fr. Version 8.0.

[9] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A
Proof Assistant for Higher-order Logic. Springer, 2002.

[10] B. C. Pierce. Types and programming languages. MIT press,
2002.

[11] J. Richardson and A. Bundy. Proof planning methods as
schemas. J. Symbolic Computation, 11:1–000, 1999.

[12] A. K. Wright and M. Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 1994.

https://github.com/larsrh/libisabelle
http://twelf.org/
http://coq.inria.fr
http://coq.inria.fr

	Motivation
	Problem
	Approach
	Identifying Domain-Specific Proof Strategies
	Representing Domain-Specific Proof Strategies
	Mechanizing Domain-Specific Proof Strategies

	Evaluation

